Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp. strain OX1.

نویسندگان

  • Eugenio Notomista
  • Valeria Cafaro
  • Giuseppe Bozza
  • Alberto Di Donato
چکیده

Bacterial multicomponent monooxygenases (BMMs) are a heterogeneous family of di-iron monooxygenases which share the very interesting ability to hydroxylate aliphatic and/or aromatic hydrocarbons. Each BMM possesses defined substrate specificity and regioselectivity which match the metabolic requirements of the strain from which it has been isolated. Pseudomonas sp. strain OX1, a strain able to metabolize o-, m-, and p-cresols, produces the BMM toluene/o-xylene monooxygenase (ToMO), which converts toluene to a mixture of o-, m-, and p-cresol isomers. In order to investigate the molecular determinants of ToMO regioselectivity, we prepared and characterized 15 single-mutant and 3 double-mutant forms of the ToMO active site pocket. Using the Monte Carlo approach, we prepared models of ToMO-substrate and ToMO-reaction intermediate complexes which allowed us to provide a molecular explanation for the regioselectivities of wild-type and mutant ToMO enzymes. Furthermore, using binding energy values calculated by energy analyses of the complexes and a simple mathematical model of the hydroxylation reaction, we were able to predict quantitatively the regioselectivities of the majority of the variant proteins with good accuracy. The results show not only that the fine-tuning of ToMO regioselectivity can be achieved through a careful alteration of the shape of the active site but also that the effects of the mutations on regioselectivity can be quantitatively predicted a priori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed t...

متن کامل

Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.

The pathways for degradation of aromatic hydrocarbons are constantly modified by a variety of genetic mechanisms. Genetic studies carried out with Pseudomonas stutzeri OX1 suggested that the tou operon coding for toluene o-xylene monooxygenase (ToMO) was recently recruited into a preexisting pathway that already possessed the ph operon coding for phenol hydroxylase (PH). This apparently resulte...

متن کامل

Identification of the Pseudomonas stutzeri OX1 toluene-o-xylene monooxygenase regulatory gene (touR) and of its cognate promoter.

Toluene-o-xylene monooxygenase is an enzymatic complex, encoded by the touABCDEF genes, responsible for the early stages of toluene and o-xylene degradation in Pseudomonas stutzeri OX1. In order to identify the loci involved in the transcriptional regulation of the tou gene cluster, deletion analysis and complementation studies were carried out with Pseudomonas putida PaW340 as a heterologous h...

متن کامل

Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1.

Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol...

متن کامل

Functional redundancy in phenol and toluene degradation in Pseudomonas stutzeri strains isolated from the Baltic Sea.

In the present study we describe functional redundancy of bacterial multicomponent monooxygenases (toluene monooxygenase (TMO) and toluene/xylene monooxygenase (XylAM) of TOL pathway) and cooperative genetic regulation at the expression of the respective catabolic operons by touR and xylR encoded regulatory circuits in five phenol- and toluene-degrading Pseudomonas stutzeri strains. In these st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 2009